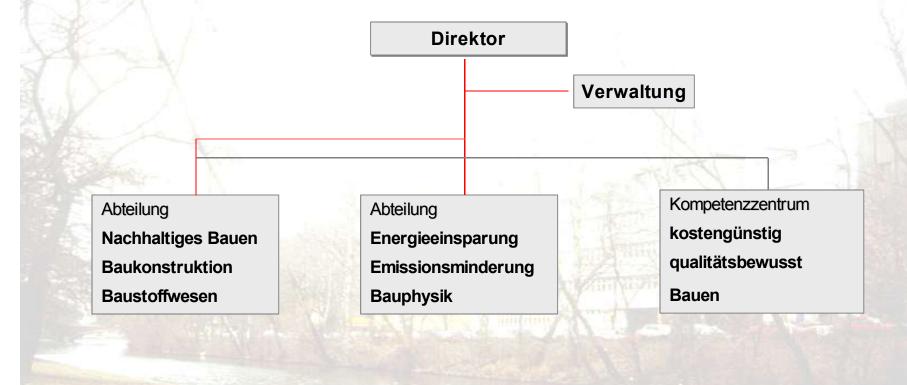
#### III. Baustelleninformationstag Hofheim

# Energetische Bewertung von Bestandsgebäuden mit der Energieeinsparverordnung


Dr.-Ing. Eberhard Helmstädter, IEMB

- 7 Energieeinsparverordnung
- 8 Gebäudebestand, NEH-Projekt
- 9 Berechnungen nach EnEV
- 10 Ergebnisse Forsthaus 16-20
- 11 CO<sub>2</sub>-Emission
- 12 Zusammenfassung



### Struktur

### Institut für Erhaltung und Modernisierung von Bauwerken e.V. an der TU Berlin



Internet: www.iemb.de e-mail: zentrale@iemb.de

Telefon: (030) 399 21 - 6 Telefax: (030) 399 21 - 850



#### Energieeinsparverordnung

## Wesentliche Veränderungen im Vergleich zur WärmeschutzV und zur HeizungsanlagenV

- Zusammenführung von WärmeschutzV und HeizungsanlagenV
- Verschärfung des Anforderungsniveaus gegenüber der WärmeschutzV
- Anforderung an die Primärenergie unter Einbeziehung der Warmwasserbereitung und elektrischer Hilfsenergie
- EU-Harmonisierung / Bezugnahme auf europäische Normen



#### Energieeinsparverordnung

Wärmedämmung

EnEV fordert "energiesparenden Mindestwärmeschutz".

Der Wärmeschutz des Gebäudes ist nur noch ein Teilaspekt.

Weitere Aspekte

Lüftung, Wärmebrücken, Anlagentechnik, Energieträger



#### **Energieeinsparverordnung**

Anforderungen an bestehende Gebäude und Anlagen betreffen (gelten auch für die NEH-Projekte):

Änderung von Gebäuden (Anforderungen an Bauteile, Erweiterungen)

Nachrüstungen bei Anlagen und Gebäuden (Heizkessel, Dämmung von Leitungen, oberste Geschossdecken, Ausnahmen)

Aufrecherhaltung der energetischen Qualität



#### **NEH - Projekt**

Hauptanforderungen an die Projekte auf Basis der EnEV (Rechenalgorithmus):

Jahres-Primärenergiebedarf

Verminderung des Transmissionswärmeverlustes gegenüber Anforderung der EnEV (Neubau)

Berechnungen bzw. Nachweis erfolgen für das sanierte Gebäude (Randbedingungen werden gut zutreffen).

Jahres-Heizwärmebedarf (EnEV)

CO<sub>2</sub>-Emission (KfW-Gebäudesanierungsprogramm)

Berechnungen bzw. Nachweis erfolgen für das Gebäude vor und nach der Sanierung.



#### **NEH-Projekt**

#### Anforderungen gemäß NEH-Projekt

| Level | Modellfö                       | Basisförderung                                                |                           |  |
|-------|--------------------------------|---------------------------------------------------------------|---------------------------|--|
|       | Jahres-<br>Primärenergiebedarf | Verminderung CO₂-<br>Emission                                 |                           |  |
|       | $Q_p^{\prime\prime}$           | ∆H <sub>T</sub> ′/H′ <sub>T,max</sub> ·100%                   | ΔΕ                        |  |
|       | kWh/(m²·a)                     | %                                                             | kg <sub>CO2</sub> /(m²·a) |  |
| Α     | ≤ 40                           | ≤ 45                                                          | ≤ 40                      |  |
| В     | ≤ 50                           | ≤ 37                                                          | ≤ 40                      |  |
| С     | ≤ 60                           | ≤ 30                                                          | ≤ 40                      |  |
|       | Berechnung für das Ge<br>En    | vor/ nach Sanierung<br>KfW-CO₂-Gebäude-<br>sanierungsprogramm |                           |  |

Quelle: Pflichtenheft



#### **EnEV**, Normen

Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung - EnEV)

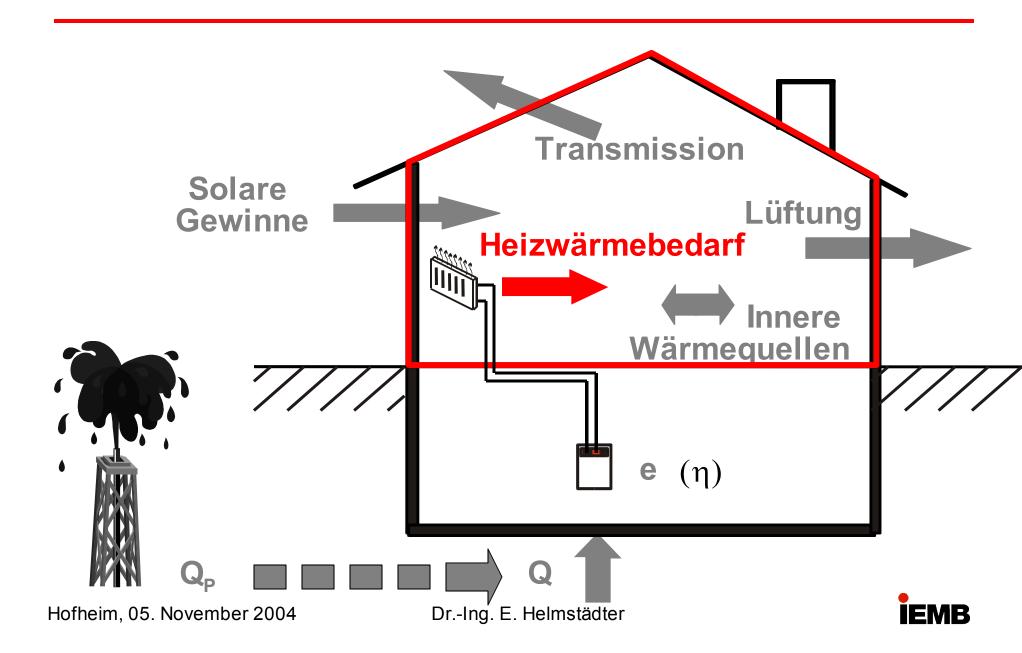
EN 832 / EN 13790

EN 14335

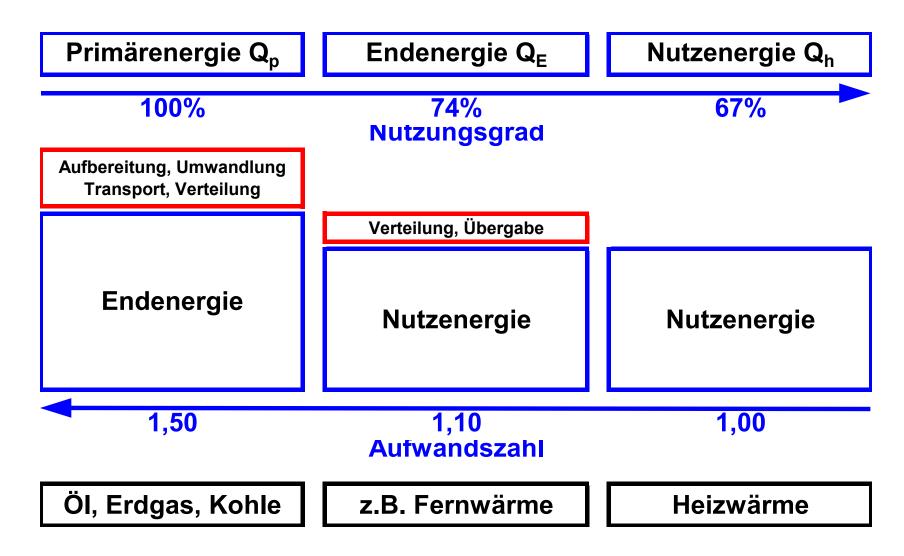
**DIN V 4108-6: Juni 2003** 

Wärmeschutz und Energieeinsparung in Gebäuden

Teil 6: Berechnung des Jahresheizenergiebedarfs

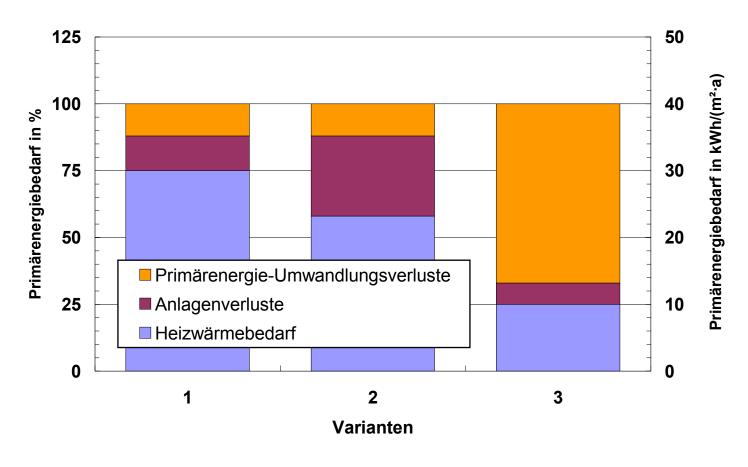

**DIN V 4701-10: August 2003** 

Energetische Bewertung von heiz- und raumluft- technischen Anlagen


Teil 10: Heizung, Trinkwassererwärmung, Lüftung



#### Primärenergie, Anlagenverluste




#### **Energetische Kette**





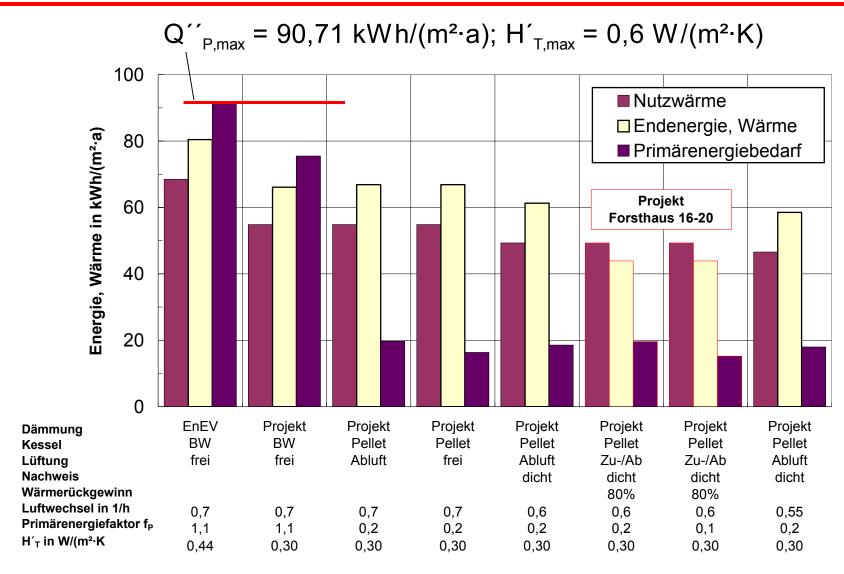
#### Primärenergiebedarf - Heizwärmebedarf - Anlagenverluste





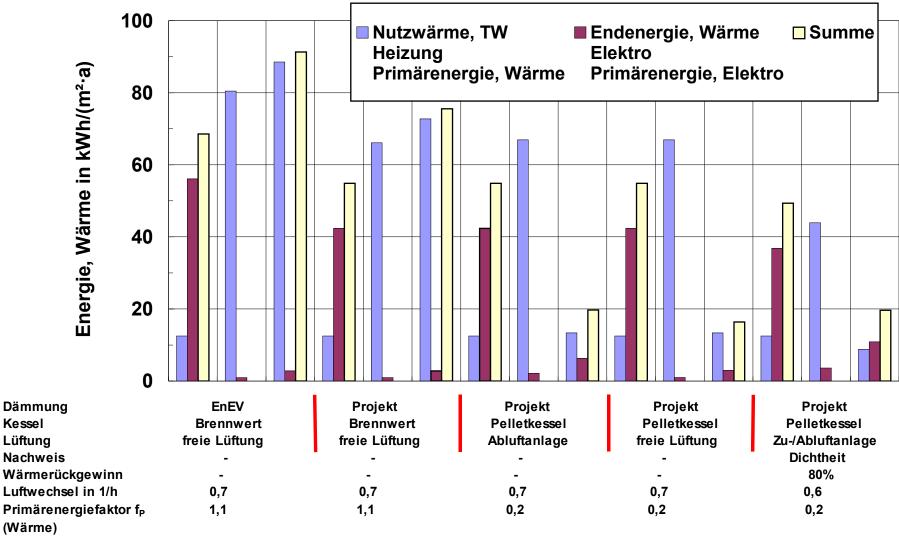
#### Primärenergiefaktoren

#### Primärenergiefaktoren f<sub>P</sub>


Pauschalwerte nach DIN V 4701 T.10, Tabelle C.4-1

| Energieträger/ Wärmeversoi | Primär-<br>energiefaktor |       |
|----------------------------|--------------------------|-------|
|                            | Heizöl EL                | 1,1   |
|                            | Erdgas H                 | 1,1   |
| Brennstoffe                | Flüssiggas               | 1,1   |
| Brennstone                 | Steinkohle               | 1,1   |
|                            | Braunkohle               | 1,2   |
|                            | Holz                     | 0,21) |
| Nah- und Fernwärme aus     | fossiler Brennstoff      | 0,7   |
| KWK                        | erneuerbarer Brennstoff  | 0     |
| Nah- und Fernwärme aus     | fossiler Brennstoff      | 1,3   |
| Heizwerken                 | erneuerbarer Brennstoff  | 0,1   |
| Strom                      | Strom-Mix                | 3,0   |

<sup>1)</sup> Dieser Wert berücksichtigt ausschließlich den nicht regenerativen Anteil.



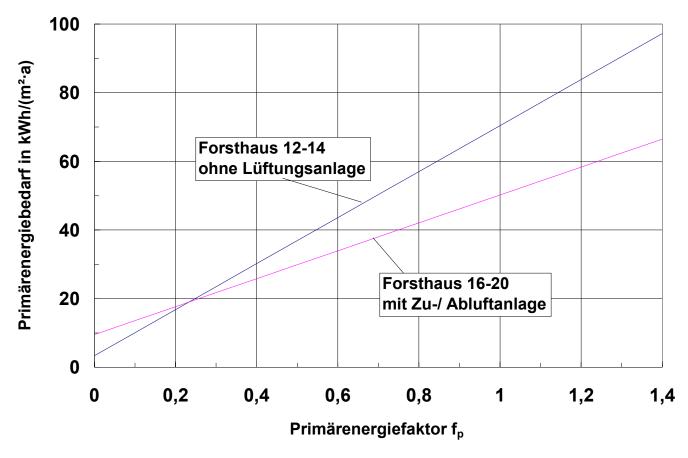

#### Nutzwärme, End- und Primärenergie





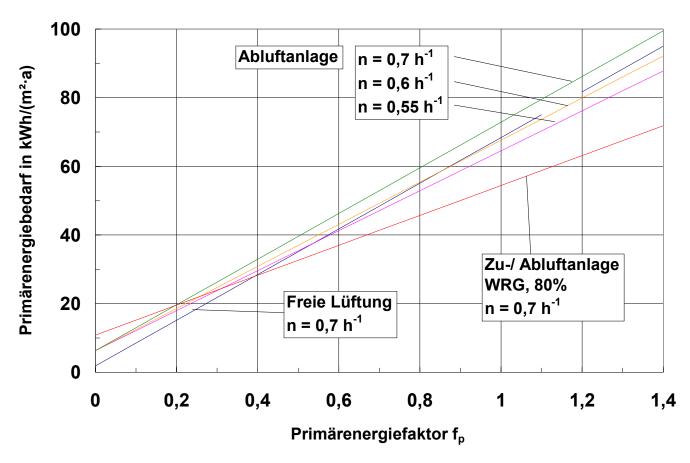
#### Nutzwärme, Primärenergie






#### Vergleich Forsthaus 12-14 und 16-20

| Gebäude                           | Symbol           | Dim.       | Forsthaus |       |
|-----------------------------------|------------------|------------|-----------|-------|
|                                   |                  |            | 12-14     | 16-20 |
| Gebäudenutzfläche                 | A <sub>N</sub>   | m²         | 898       | 1.388 |
| Luftwechsel                       | n                | 1/h        | 0,7       | 0,6   |
| Heizwärmebedarf                   | $q_h$            | kWh/(m²·a) | 41,54     | 33,57 |
| Wärmebedarf Trinkwasser           | q <sub>tw</sub>  | kWh/(m²·a) | 12,50     | 12,50 |
| Nutzwärmebedarf                   |                  | kWh/(m²·a) | 54,04     | 46,07 |
| Endenergie, Wärme                 | $q_E$            | kWh/(m²·a) | 67,03     | 40,67 |
| Endenergie, Strom                 | $q_E$            | kWh/(m²·a) | 1,13      | 3,18  |
| Primärenergiefaktor, Hilfsenergie | $f_p$            |            | 3,00      | 3,00  |
| Primärenergiefaktor, Wärme        | $f_p$            |            | 0,10      | 0,10  |
| Primärenergiebedarf               | Q``p             | kWh/(m²·a) | 10,09     | 13,61 |
| Primärenergiefaktor, Wärme        | $f_p$            |            | 0,20      | 0,20  |
| Primärenergiebedarf               | Q`` <sub>p</sub> | kWh/(m²·a) | 16,80     | 17,67 |
| Primärenergiefaktor, Wärme        | f <sub>p</sub>   |            | 0,30      | 0,30  |
| Primärenergiebedarf               | Q`` <sub>p</sub> | kWh/(m²·a) | 23,50     | 21,74 |
| Primärenergiefaktor, Wärme        | f <sub>p</sub>   |            | 1,00      | 1,00  |
| Primärenergiebedarf               | Q`` <sub>p</sub> | kWh/(m²·a) | 76,57     | 40,67 |




## Objekte mit und ohne Lüftungsanlage im Vergleich





### Objekt Forsthaus 16-20, mit und ohne Lüftungsanlage im Vergleich





#### CO<sub>2</sub> – Emission

#### **Emission (Heizwärme)**

$$E = Q_P \cdot \frac{E}{Q_P} = Q_P \cdot f; \quad E = Q_E \cdot \frac{Q_P}{Q_E} \cdot \frac{E}{Q_P} = Q_E \cdot f_P \cdot f = Q_E \cdot f^*$$

$$E = Q_h \cdot \frac{Q_P}{Q_h} \cdot \frac{E}{Q_P} = Q_h \cdot e_P \cdot f = Q_h \cdot f^{**}$$

E - kWh/a Emission

Q<sub>P</sub> - kWh/a Primärenergie

Q<sub>E</sub> - kWh/a Endenergie

Q<sub>b</sub> - kWh/a Jahres-Heizwärmebedarf

f<sub>P</sub> - Primärenergiefaktor

f, f\*, f\*\* - kg<sub>CO2</sub>/kWh Emissionsfaktoren

e<sub>p</sub> - Anlagenaufwandszahl

Dr.-Ing. E. Helmstädter

Hofheim, 05. November 2004



#### CO<sub>2</sub>-Emission

| Gebäude                               | Symbol         | Dimension                           | Forsthaus |        |        |
|---------------------------------------|----------------|-------------------------------------|-----------|--------|--------|
|                                       |                |                                     | 12-14     | 16     | 18-20  |
| lst-Zustand                           |                |                                     |           |        |        |
| Gebäudenutzfläche                     | A <sub>N</sub> | m²                                  | 727       | 362    | 728    |
| Heizwärmebedarf                       | q <sub>h</sub> | kWh/(m²·a)                          | 174,00    | 174,90 | 167,20 |
| Emissionsfaktor                       | f              | kg <sub>CO2</sub> /kWh <sub>h</sub> | 0,36      | 0,36   | 0,36   |
| (Erdgas, Standardkessell)             |                |                                     |           |        |        |
| Spezifische CO <sub>2</sub> -Emission |                | kg <sub>CO2</sub> /(m²·a)           | 62,64     | 62,96  | 60,19  |
| Soll-Zustand                          |                |                                     |           |        |        |
| Gebäudenutzfläche                     | A <sub>N</sub> | m²                                  | 898       | 1.388  |        |
| Heizwärmebedarf                       | q <sub>h</sub> | kWh/(m²·a)                          | 41,54     | 33,57  |        |
| Emissionsfaktor (Bio-Masse, Pellets)  | f              | kg <sub>CO2</sub> /kWh <sub>h</sub> | 0         | 0      |        |
| Spezifische CO <sub>2</sub> -Emission |                | kg <sub>CO2</sub> /(m²·a)           | 0         | 0      | 0      |
| Emissionsminderung                    | Δе             | kg <sub>CO2</sub> /(m²·a)           | 62,64     | 62,96  | 60,19  |
| Emissionsfaktor (Gas-Brennwertkessel) | f              | kg <sub>CO2</sub> /kWh <sub>h</sub> | 0,25      | 0,25   |        |
| Spezifische CO <sub>2</sub> -Emission |                | kg <sub>CO2</sub> /(m²·a)           | 10,38     | 8,39   | 8,39   |
| Emissionsminderung                    | Δе             | kg <sub>CO2</sub> /(m²·a)           | 52,26     | 54,57  | 51,80  |



#### Zusammenfassung

Der Rechenalgorithmus der EnEV ist für die Bewertung der NEH-Projekte grundsätzlich geeignet.

Die Anforderungen der EnEV an den Gebäudebestand werden bei anspruchsvollen Projekten ohnehin erfüllt (oberste Geschossdecke, Heizleitungen).

Bei Gebäuden mit niedrigem Primärenergiebedarf gewinnt die elektrische Hilfsenergie an Bedeutung (Optimierung von Pumpen, Ventilatoren).

Lüftungsanlagen, Wärmerückgewinnung können zu einem Anstieg des Primärenergiebedarfs führen, die Einsparpotenziale liegen bei der Endenergie (Kosten).

